Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensors
نویسندگان
چکیده
The paper reports on controlled formation of microscale wrinkles and ridges on the surface of a bioelectrode via mechanical stretching to tune and optimize the electrochemical sensing performances of graphene oxide (GO) based nitrate ion sensors. The bioelectrode consists of GO nanosheets drop-coated on a gold (Au) layer with a pre-stretched elastomer substrate. Enzyme nitrate reductase is used for covalent immobilization on the wrinkled-ridged GO surface. Upon relaxation from the pre-stretch, wrinkles or ridges are formed in the GO layer. As the pre-stretch increases, the sinusoidal wrinkles transform to localized ridges on the surface of bioelectrodes. Such morphological transitions, realized by simple mechanical stretching and relaxing, allow optimizing of the electrochemical current and sensing characteristics of the nitrate sensor. The sensing performances of the bioelectrodes at different pre-stretches are investigated. In addition to an increased electroactive surface area, the predominant localized ridges with small sinusoidal wrinkles formed on the GO surface provide a favorable spatial feature, enabling efficient radial diffusion of nitrate ions from surrounding analyte solutions onto the surface of the textured bioelectrode. At the pre-stretch of 8%, the nitrate sensor using the wrinkled-ridged bioelectrode exhibits a considerably high sensitivity of 0.224 mA L mol 1 cm 2 in response to nitrate ions, which is five times higher than that provided by the planar counterpart. Also, the textured bioelectrode shows high selectivity even in the presence of other inferring ions. The present nitrate sensor has potential applications in nitrate detection in sustainable agriculture, environmental monitoring, food analysis, and pharmaceutical industries.
منابع مشابه
Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملElectrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor
Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...
متن کاملAmperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite
Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs.A nanocomposite of reduced graphene oxide-...
متن کاملAmperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite
Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs.A nanocomposite of reduced graphene oxide-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016